Leptin Promotes Glioblastoma
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ABSTRACT

The hormone leptin has a variety of functions. Originally known for its role in satiety and
weight loss, leptin more recently has been shown to augment tumor growth in a variety
of cancers. Within gliomas, there is a correlation between tumor grade and tumor
expression of leptin and its receptor. This suggests that autocrine signaling within the
tumor microenvironment may promote the growth of high grade gliomas. Leptin does
this through stimulation of cellular pathways that are also advantageous for tumor
growth and recurrence: antiapoptosis, proliferation, angiogenesis and migration.
Conversely, a loss of leptin expression attenuates tumor growth. In animal models of
colon cancer and melanoma, a decline in the expression and secretion of leptin resulted
in a reduction of tumor growth. In these models, positive mental stimulation through
environmental enrichment decreased leptin secretion and improved tumor outcome.

This review explores the link between leptin and glioblastoma.



INTRODUCTION

Leptin is the product of the obese gene, located on chromosome 7 in humans.
Mice with mutation in the obese gene are obese and insatiable [1]. When exogenous
leptin is injected into leptin deficient obese mice (ob/ob mice), the protein promotes
satiety and weight loss [2-5]. The effects of leptin on these obese mice sparked a leptin
intense focus in obesity research over the past 15 years. Unlike the ob/ob mice, obese
humans are not leptin deficient. Obese humans have high circulating leptin levels which
are directly correlated to the total amount of adipose tissue [6]. Leptin helps regulate
bodyweight in humans by negative feedback promoting satiety when energy stores are
elevated [7]. The current model suggests that obesity in humans is due to a
desensitization to leptin. Obese subjects have a diminished response to leptin and in
some subjects the diminished response is due to a mutation in the leptin receptor gene
[8]. The high prevalence of obesity in the U.S. is strongly correlated with the risk of
multiple diseases, including cancer [9]. The association between cancer and obesity
may, in part, be explained by elevated circulating leptin.
LEPTIN IN CANCER

Leptin has been classified as a growth factor because it stimulates three key
pathways well known for their roles in cell growth: proliferation, survival, and motility and
migration (Figure 1). It is well documented that the binding of leptin to the leptin receptor
(ObR) activates the Janus kinase-signal transducer and activator of transcription (JAK-
STAT), the mitogen-activated protein kinase (MAPK) and the phosphatidylinositol 3-
kinase (PI3K) pathways in both normal [10-22] and malignant cells [20, 23-41].

Supporting a role of leptin in cancer pathogenesis, are reports that DNA polymorphisms



in the leptin and ObR genes are associated with increased risk and progression of
breast [42], prostate [43] and oral cancer [44].

Evidence generally supports leptin as a growth factor, promoting cell division and
evasion of cell death [45]. Numerous reports indicate that leptin has both antiapoptotic
[28, 33, 34, 36, 46-54] and proliferative effects [24, 25, 27, 29-31, 33, 34, 36, 41, 47, 49,
50, 52, 53, 55-59] (Table 1). It appears that leptin-mediated proliferation of these
cancers occurs through the activation of the JAK-STAT [25, 27, 29-31, 34, 41], PI3K
[24, 31, 33, 36] and MAPK [24, 31] pathways, whereas apoptosis avoidance is
promoted by leptin via the JAK-STAT [28, 34] and PI3K [33, 36] pathways (Figure 1).

Migration is enhanced by leptin in several normal [10, 20-22, 60, 61] and
cancerous tissues [20, 23, 26, 32, 37, 39, 40, 62-65] (Table 1). Leptin treatment
increases the growth and migration of cholangiocarcinoma cells in vitro and
cholangiocarcinoma is inducible in obese fa/fa Zucker (faulty ObR) rats [53]. In
metastatic colon cancer cells, leptin provokes the formation of lamellipodia and
augments invasion through the MAPK and PI3K pathways [62]. It has since been
confirmed that leptin increases migration through the MAPK and PI3K pathways in
prostate [37, 39, 40], liver [26], cartilage [32] and breast [23, 40, 65] cancers, as well as
the JAK-STAT pathway in colon [35], prostate [39], liver [26] and breast [23] cancers.
Compounding the complexity of leptin’s role in carcinogenesis is that leptin may have
differential responses in closely related cells; leptin induces migration in papillary thyroid
cancer cells but not in anaplastic and follicular thyroid cancer cells [63].

In addition to its role in cellular proliferation, apoptosis avoidance and migration,

leptin is a potent angiogenic factor. Using an in vitro angiogenesis assay, leptin



enhances the formation of capillary-like tubes by human umbilical venous endothelial
cells [66]. In 5- to 6-week-old C57BL/6J mice, leptin induces fenestrated blood vessel
growth [67]. This response is synergistic with vascular endothelial growth factor (VEGF)
and fibroblast growth factor-2 [67]. Myometrial cells and the blood-vessel walls of
uterine myomas contain leptin though the surrounding normal tissue does not. This
suggests leptin may be involved in angiogenesis and the development of uterine cancer
[68]. VEGF levels are augmented by leptin in various cancers [37, 38, 58, 69]. It has
been reported that the leptin-induced up-regulation of VEGF may be due to activation of
the IL-1 system [38]. This leptin-mediated IL-1 up-regulation appears to be
accomplished by activation of the MAPK and PI3K pathways, among others [37, 38].
Leptin and ObR expression are correlated with the grade of the tumor, differentiation,
and microvessel density [58, 70]. VEGF expression is also correlated to these variables
[58]. It is noteworthy to mention that Per Ole Iverson and coworkers blocked the ObR
which suppressed rat leukemia cell growth by inhibiting angiogenesis [71]. Interestingly,
hypoxia can induce VEGF production in cells and it has been demonstrated that leptin
expression is also augmented under similar conditions [72].
THE LEPTIN GBM CONNECTION

It was once thought that adipocytes were the sole producers of leptin. However,
leptin expression and secretion has since been demonstrated in several tissues of the
body (cancerous and noncancerous) including the pituitary gland and hypothalamus
[73]. Barbara Morash and colleagues provided the first report of leptin expression in
glioma following detection of leptin expression in the rat C6 glioma cell line [73]. It was

later shown that C6 cells express more leptin and ObR than normal glial tissue [74].



Leptin and ObR expression subsequently has been confirmed in human primary GBM
tissue as well as established human GBM cells lines [75]. Leptin and ObR are
overexpressed in human primary brain tumors when compared to normal glial tissue
[75]. Furthermore, the expression of the leptin-ObR system correlates with histological
grade — GBM has the greatest levels of leptin and ObR while low grade gliomas have
the least [75]. This suggests that leptin/ObR autocrine/paracrine signaling increases the
malignant characteristics of gliomas.

Leptin/ObR overexpression in glioma [75] coupled with recent evidence that the
release of leptin from adipose tissue promotes melanoma and colon cancer [76],
provides strong evidence that leptin plays a role in cancer pathogenesis. In the rat C6
cell line, leptin knockdown using RNA interference produced a reduction of both leptin
MRNA and leptin protein. This knockdown caused a twofold increase in cell death
suggesting that endogenous leptin promotes cell survival [77]. Furthermore, exogenous
leptin enhances migration and invasion of the rat C6 cells through increased levels of
matrix metalloproteinase-13 (MMP-13) [74]. The leptin-mediated up-regulation of MMP-
13 occurs through the MAPK pathway [74].

While there is increasing evidence of leptin’s role in angiogenesis [37, 38, 58,
69], no studies (to our knowledge) have indicated how leptin might affect angiogenesis
in GBM. However, hypoxia, which is a characteristic of solid tumors, is more
pronounced with higher grades of glioma [78] and may explain the increased expression
of leptin and ObR in GBM compared to lower grade glioma [75].

ENVIRONMENTAL ENRICHMENT MODULATES LEPTIN LEVELS



It is increasingly evident that the enhanced mental stimulation from
environmental enrichment (EE) delays the advancement of neurodegenerative
disorders such as Huntington’s, Parkinson’s and Alzheimer’s [79], slows the progression
of cancer [76, 80-82] and increases the activity of natural killer cells [83]. Environmental
enrichment refers to the living conditions of the subject. In the context of the rodent, EE
is achieved through conditions that allow the rodent to roam more freely, engage with
the surroundings, be housed with other rodents and have better access to exercise
equipment. For humans, increased social and physical activity leads to EE.
Interestingly, EE can reduce peripheral leptin expression and release [76].

The response to EE is related to the type of stress the subject experiences: EE
increases eustress and decreases distress. Eustress is the result of positive stressors
like exercise and social interaction whereas distress is the result of negative stressors
like mental stress and social isolation. The augmentation of eustress and the reduction
of distress are associated with longer survival and slower tumor growth [76, 80, 82].
Probably the most significant human data to date are those reported by Barbara
Andersen and her colleagues who showed that distress reduction through psychological
intervention resulted in a 45% decrease in the risk of breast cancer recurrence [80] and
a 59% reduction in the risk of dying following breast cancer recurrence [82]. The
physiological basis for this finding is an active area of investigation. Using mouse
models for melanoma and colon cancer, Cao et al. demonstrated that EE enhances
brain-derived neurotrophic factor (BDNF) expression [76]. BDNF in turn activates
sympathetic nerve fibers innervating white adipose tissue. This beta-adrenergic

stimulation suppresses leptin secretion resulting in cancer inhibition and remission [76].



ENVIRONMENTAL ENRICHMENT AND GBM

A study has yet to be designed that blocks ObR or alters leptin levels in GBM
subjects or animal models. One viable option for GBM treatment may be through EE.
Recall that EE-induced activation of the brain-adipocyte BDNF/leptin axis causes
cancer remission and inhibition in mice [76] and distress reduction lowers the rate of
recurrence in breast cancer patients [80]. Environmental enrichment and psychological
treatment increase BDNF and thereby reduce systemic leptin via sympathetic activation
of beta-adrenergic receptors in adipose tissue. This hypothalamic-sympathoneuronal-
adipocyte axis does not address the potential leptin-ObR autocrine signaling loop of
GBM. Factors that influence the transcriptional regulation of the leptin gene in the rat C6
cells are different than those in adipose tissue [84, 85] and therefore successful
treatments may need to be more specific to GBM. Therapies that are successful at
crossing the blood-brain-barrier and reducing the leptin-ObR signaling loop in GBM are
needed and should be a focus of future research.
SUMMARY

Leptin, which may be controlled by specific stimulation of the brain via EE or
psychological intervention, has significant influence on tumor growth. In GBM and other
cancer cells, leptin promotes cancer by stimulating cellular pathways that are
advantageous for proliferation, angiogenesis and evasion of death. Unfortunately, most
of what is known about leptin and glioma stems from the rat C6 cell line. Future studies
should focus on established human GBM cell lines and primary GBM neurosphere

cultures both in vitro and in vivo.
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FIGURE LEGENDS

Figure 1: Cellular pathways activated through leptin receptor (ObR) stimulation.



TABLES

Table 1. Summary of Literature: Leptin’s Role in Cancer Promotion*

Cancer type Antiapoptosis Proliferation  Migration  Angiogenesis
Bone 24

Breast 28, 46 27, 56 23, 65 38, 69
Cartilage 32

Colon 48 57, 58 20, 62, 64 58
Endometrial 34 30, 31, 34

Esophageal 51

Gallbladder 53 53

Gastric 25, 59

Glioma 77 74

Kidney 29

Large B-cell Lymphoma 33

Leukemia 47 a7 71
Liver 52 41, 52 26 70
Lung 53

Neuroblastoma 49 49

Ovarian 55

Prostate 50 50 37, 39, 40

Thyroid 36 36 63 37
Uterine 68

*Numbers correspond to works cited.



