Tension Tester Fixtures

Kyle St. John & Joe Whitens
Purpose of Project

- Add additional value to existing machine
- Benefits future students
- Broadens reach of current lab
Compression Tester

• Can be used for a variety of applications

• i.e.:
 – Finding spring rates
 – Small cylindrical samples
 – Various materials
 – Rigidity of samples
Flexure Tester

• Allows students in real time to see bending stress
• Different spans, with the same material.
• Can compare rigidity.
• Compare breaking point for brittle materials

Standard Instron flexure tester
Design Compatibility

- Designed a standard attachment for use with the present Instron tester for both the compression and flexure fixtures.
Design Details-Compression Tester

Key design feature of Compression Plates.

- In the new design accuracy of the sample placement is controlled through the use of engraved incremental measurements (1”).
Static Loading-Compression Tester
In the new design accuracy of the span is controlled through the use of engraved incremental measurements.
Design Details-Flexure Tester

Key design features of anvil
- Rollers made of hardened tools steel
 - High strength
 - High wear resistance for longevity
- Lower anvil made of Stainless Steel
 - Allows rollers to move with the flexing of material to minimize drag and decrease testing error.
A “T-slot” design was used in the lower flexure fixture for the following reasons.

- Ease of machining.
- Enhance accuracy of anvil placement.
Static Loading-Flexure Tester

Model name: Instron Flexure Fixture - Lower
Study name: Study 2
Plot type: Static nodal stress Stress1
Manufacturing
Pictures - Flexure Tester
Pictures - Flexure Tester
Pictures - Compression Tester
Pictures - Compression Tester
Estimated Total Rough Stock Cost

<table>
<thead>
<tr>
<th>Name of Part</th>
<th>Material</th>
<th>Max Attainable Rockwell Hardness</th>
<th>Yield in PSI</th>
<th>Dimensions (in.)</th>
<th>Price of Stock (Each)</th>
<th>Quantity</th>
<th>Sub. Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intron Standard Attachment</td>
<td>Multipurpose Air-Hardened A2 Tool Steel</td>
<td>C62-65</td>
<td>50,000</td>
<td>1.75 Round x 12</td>
<td>$57.93</td>
<td>2</td>
<td>$115.86</td>
</tr>
<tr>
<td>Compression Plates</td>
<td>Multipurpose Air-Hardened A2 Tool Steel</td>
<td>C62-65</td>
<td>50,000</td>
<td>6 Round x 1.5</td>
<td>$73.33</td>
<td>2</td>
<td>$146.66</td>
</tr>
<tr>
<td>Lower Anvil Support, Flexure</td>
<td>Ultra-Machinable 12L14 Carbon Steel</td>
<td>C55-C60</td>
<td>60,000</td>
<td>2.5 x 2.5 x 12</td>
<td>$132.36</td>
<td>1</td>
<td>$132.36</td>
</tr>
<tr>
<td>Lower Anvil</td>
<td>High-Strength Copper (Alloy 182)</td>
<td>B60-B70</td>
<td>48,000-65,000</td>
<td>1 x 1.5 x 12</td>
<td>$123.60</td>
<td>1</td>
<td>$123.60</td>
</tr>
<tr>
<td>Rollers</td>
<td>Multipurpose Air-Hardened A2 Tool Steel</td>
<td>C62-C65</td>
<td>55,000</td>
<td>1 Round x 12</td>
<td>$24.93</td>
<td>1</td>
<td>$24.93</td>
</tr>
<tr>
<td>Upper Support</td>
<td>General Purpose Low-Carbon Steel</td>
<td>C60-C62</td>
<td>54,000-70,000</td>
<td>2 Round x 3</td>
<td>$10.27</td>
<td>1</td>
<td>$10.27</td>
</tr>
<tr>
<td>Lower Support</td>
<td>Hot Rolled A-36 Steel</td>
<td></td>
<td></td>
<td>3 x 3 24</td>
<td>$145.34</td>
<td>1</td>
<td>$145.34</td>
</tr>
<tr>
<td>Locking Nut</td>
<td>Standard Low Carbon Steel</td>
<td>n/a</td>
<td>n/a</td>
<td>1.5 ID x .47</td>
<td>$4.89</td>
<td>4</td>
<td>$19.56</td>
</tr>
<tr>
<td>Clevis Pin</td>
<td>Standard Low Carbon Steel</td>
<td>n/a</td>
<td>n/a</td>
<td>1/2 x 3.75</td>
<td>$12.95</td>
<td>1</td>
<td>$12.95</td>
</tr>
<tr>
<td>Shipping</td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Without Shipping</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$731.53</td>
</tr>
</tbody>
</table>
Actual Total Rough Stock Cost

- Actual Rough Stock Cost
 - $645.78
 - **Savings to Dept. = $85.75**
 - Accomplished with last consultation session with Dr. Marlor.
Questions?