Math 251: Calculus I
Fall Semester, 2013
M, T, W, Th, F 2:00 – 2:50 in NSF 1706

<table>
<thead>
<tr>
<th>Course Instructor:</th>
<th>Dr. David Buhl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office:</td>
<td>1117 New Science Facility</td>
</tr>
<tr>
<td>Office Phone:</td>
<td>906 227-2089</td>
</tr>
<tr>
<td>E-mail:</td>
<td>dbuhl@nmu.edu</td>
</tr>
<tr>
<td>Office Hours:</td>
<td>11:00 Thursday; 3:00 – 4:00 Tues, Thurs, Friday</td>
</tr>
</tbody>
</table>

I am in my office many hours besides the ones that are listed. If you are interested in chatting, just drop me an email to set up an appointment and I will be happy to meet with you. (I also teach at 9:00 and 10:00 on Mon, Wed, Thurs, and Friday and tend to have meetings Monday afternoon and Tuesday morning)

Brief Description of the Course:
This introductory calculus course contains a brief review of precalculus mathematics, limits, the derivative, differentiation rules, applications of the derivative, the definite integral, the Fundamental Theorem of Calculus, and an introduction to the applications of the integral.

This course satisfies the Foundation of Natural Sciences/Mathematics requirement. Students who complete this course should be able to demonstrate a basic understanding of mathematical logic; use mathematics to solve scientific or mathematical problems in college classes; express relationships in the symbolic language of mathematics; and appreciate the role of mathematics in analyzing natural phenomena.

Prerequisite: An earned grade of “C-” or better in MA 115 or equivalent

Text/Materials: Single Variable Calculus: Early Transcendentals- James Stewart 6E

Learning Outcomes
1. The student will be able to correctly evaluate a variety of types of limits and interpret their relationship to concepts such as continuity and differentiability.
2. The student will be able to select and apply the appropriate differentiation techniques.
3. The student will be able to select and apply the appropriate integration techniques.
4. The student will model and solve a variety of problems using integration and differentiation, including but not limited to optimization, related rates, and basic physics.
Assessment:
Some form of assessment will take place most every week. Forms of assessment include: collected homework, announced/pop quizzes, a project, and tests.

It is anticipated there will be three (3) in-class tests and cumulative final. The final is a two hour cumulative exam and will be on Wednesday, December 11 from 2:00 – 3:50 AM.

You will also be graded on classroom participation. A participant not only attends class every day (and arrives on time), but is prepared and actively contributes to learning activities. It is your responsibility to notify me in advance if you are unable to attend.

No make-ups or late work on Homework or Quizzes will be allowed. A make-up for a missed test will be given only under exceptional circumstances and with my prior approval.

Evaluation: (Tentative)
Homework 100 pts
3 Tests (100 pts ea) 300 pts
Cumulative Final 100 pts
Participation/project 50 pts

It is anticipated will be using the familiar 60-70-80-90 percent grading scale.

ADA Statement
If you have a need for disability-related accommodations or services, please inform the Coordinator of Disability Services in the Dean of Students Office at 2001 C. B. Hedgcock Building (227-1700). Reasonable and effective accommodations and services will be provided to students if requests are made in a timely manner, with appropriate documentation, in accordance with federal, state, and University guidelines.